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APPROXIMATION BY BERNSTEIN SYSTEMS*

William A. Porter+

O. Abstract Let K denote an arbitrary compact subset of L,.
Let f be any causal continuous function on L,. Then there is a
linear differential system: x(t) = A(t)x(t) + B(t)u(t), and a
memoryless %olynomic state to output map y(t)=¢(x(t)) such that
the system, f, thereby computed satisfies

sup ||f(u) - Eu)|] < €
x € K

where €>0 is arbitrary. This and other results are developed.

1. Introduction. This article deals with the approximation

of nonlinear systems by polynomic operators. For perspective
it is helpful to consider the familiar Volterra series

expansion on L2 given by

p(x) = ko + fkl(a)x(a)da + ijz(a,s)x(a)x(e)dade +
[[[kstas8mxt@x@xtndadaay « ... @

where the kernels kO’kl""’kn satisfy properties suitable to
an operator on Lz. For the obvious reasons we refer to each
term on the right hand side as a power function. If the
number of terms is finite then p is said to be a polynomic
operator. Our interest in polynomic operators centers on

their use as approximates of the more general nonlinear

functions on Lz.
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The relevant literature may be grouped into two

subcategories. First there is the analytic theory in which
f is assumed to have derivatives (Frechet or Gateau) of

all orders and p arises as a power series expansion on a
bounded domain. This line of development was initiated by
Volterra [1]‘and was first applied in a systems setting by
Weiner and in ensuing years several others including [2],

(31, and [4]. More recently [5], [6], [7], [8] have investigated

the Volterra expansion of solutions to nonlinear differential
equations with current emphasis on computation and convergence

problems.

The analytic theory identifies the power functions
with the derivatives of the system fﬁnction, f, to be
approximated. The requisite differentiability is a severe
condition, however, a fringe benefit accrued is that the
causality of the power functions is dictated by the causality

of f. s _ .
In an independent line of development the polynomic

approximation problem has been approached as a generalization
of the classic Weierstrass result. In this setting the
function, f, to be approximated geed not be differentiable.
Emphasis is placed on uniformly approximating f, by the

polynomial p, over an arbitrary compact set. In this approach

the causality issue is less trival. The computation of the
power funétions, which no longef represent derivatives, has
here to fore been obsure. 1In sections (3) and (4) we develop
the concept of a Bernstein differential system. This system provides

one oconstructive realization of the Weierstrass approach. In section (5) we




compare in part the properties of the analytic theory, the
Weierstrass based theory and in particular the Bernstein system
realization of section (4).

An incidental bonus of the Bernstein system is a
pseudo sampling theorem for systems. In short, given an
arbitrary system with a prescribed continuity modulus, the
density with which one must input-output sample in order to
be able to approximately reconstruct the system is established.

For efficiency of presentation we shall in many cases be
overly restrictive in the assumptions made, for example we
consider only Hilbert spaces. Also in sections (3) and (4)
the development is purposely constrained so as to use classical
results on the Bernstein polynomials.

In closing this introduction it is noted that the
admittance characteristic of the enhancement mode MOSFET
transistor provides an almost exact square law (see [9]).

It is easily shown ‘that squaring devices can be used to
construct general polynomic operators of the type necessary
to realize the Bernstein system. Thus iﬁ-appears that the
topic of polynomic system approximation may. have a ready

practicality in terms of microcircuit technology.

2. Weierstrass Approximation. .As the technical work of this

study deals primarily with the Weierstrass approximation it

is useful to comment in somewhat more detail on the existing




literature. In this regard we cite first the original
contribution of Weierstrass [10] whose fundamental result
in contemporary form reads as follows.

Let f be an arbitrary continuous function on R, the
real line. Let D ¢ R be an arbitrary compact set. Then
for every € > 0 there exists a finite polynomial p, such that
sup{|£f(x) - p(x)|: xeD} < €. The Weierstrass result, over
the years, has drawn the attention of several distinguished
mathematicians including Frechet [11], Bernstein [12] and
Stone [13] who investigated the relat onship to power series
expansions, constructive methods for finding the polynomial
and extended the result to R" among other things.

More recently Prenter [14] considered a real separable
Hilbert space H, and showed that if K ¢ H is compact, € > 0 3
and f continuous on H then there exists a finite polynomic
operator p, such that

igﬁllf(x) - p(x)|| < e. (2)
In a similar effort Prenter [15] and Ahmed [16] were able

to use normed linear spaces.

The Prenter result [14], for example, states that if f
is a continuous function on real.Lz(a,b) then on every compact
1""’kn ,
such that p of equation 1 is an e-approximation for f.

subset there exists a finite number of kernels ko,k

Actually we would suspect more, namely, that if f is causal

s .




then each kernel ki is causal, that is for instance
kl(t,t) =0, T >t. More generally, can a causality
structure be superimposed on the function and its
approximation? This question is answered affirmatively in

[17]) and [18].

The setting for [17] and [18] is a Hilbert

; {H,Pt} where H is real and separable. The

resolution space
set K ¢ H is always compact. The sets: C, SC, M, C(K), and P
denote the causal, strictly causal, memoryless, continuous
on K ¢ H, and polynomic functions, respectively, on {H,Pt}.
For brevity we shall say that P is dense in C(K) in the
sense of Prenter's theorem.

The results of [17] include the following. The set

P n SC is dense in C(K) n SC. In L, the stronger result that

2
P n SC is dense in C(K) N C is also established. This last
result does not abstract. In lz it is known [18] that P n SC
is not dense in C(K) n C.

All of the above results are nonconstructive in that

1 A formal definition is given later.




they give no clue as to finding the polynomic approximate
of a given function. On the real line, however, several
constructive forms of the Weierstrass result do exist and
the Bernstein polynomials constitute one of the more
intriguing approaches to such constructions. In section (3)
we develop a generalization of the Bernstein polynomials to
real Hilbert space. Using a causal data interpolation scheme
identification of the p € PNnSC that approximates f e C(K)nC
results.

In section (4) we consider the realization of the operator
p in state variable form. This objective is also achieved as

is evidenced by the following theorem of section (4).

Theorem. For every f ¢ C(K) N C and € > 0, there exists a

differential system

z(t)
w(t)

A(t)z(t) + B(t)u(t) , z(0) = 0,
¢(z(t),t)

where ¢((*),t) is polynomic, such that the map w = p(u)

satisfies

szpllf(U) = p(w)|]| < e.

For obvious reasons the equations of this theorem are called

a Bernstein system.

3. The Bernstein Polynomials. We shall make use of a

classical result on the Bernstein polynomials. It is helpful

to introduce this result and associated notation before




proceeding. First we define the functions pn(v:(-)) on [0,1]

by the expression
Paeix) = (3 -0™, xe [0,1) (3)

where ve{0,1,...,n}.
Now let f be a bounded function on [0,1]. The polynomial

%n(x) is defined by the equation

3 n

i fn(x) = } flv/n)p (v:ix], xe [0,1].
= v.—_o

The familar result of Bernstein is that fn(x) + f(x) at

every point of continuity of f. Moreover, if f is continuous

on [0,1], then fn + f uniformly. While we shall not dwell

on the proof of this result it is noted-that positivity

of pn(v:x) on [0,1] was used by Bernstein in an essential way.

Consider then Q = [0,1]m c R™ and let f be a function on

R™ which is bounded on Q. Let x = (x .,xm) € © and define

1’..
the polynomic function

~

fn(x1’

nn 5 L v Ve : : ¢
f[r.---,rlpn(\’l-xl),.-.,pn(\)m.xm). (4)

...,xm)

v1=0 vm=0

Using the single variate proof as a model it is easily shown
that f; + f pointwise at all points of continuity of £

and uniformly over Q@ if f is continuous on Q.

- B . T e ¢




The farther extension that is needed in
the present study is a relatively mild one. For this let
H be any real Hilbert space and {el,...,em} any finite set.
We then form

Q= {z =
i

I~

1xiei . Oixiil} (5)

and define the polynomic function %n by the equality (4).
The proof for H=R™ and Q = [0,1]m uses neither the linear
independence nor the orthonormality of the coordinate basis
of R™. As such the result; that ||§n(x)-f(x)fl + 0 at all
points of continuity of f and uniformily over @ if f is
continuous on 2, follows by inspection.

To summarize the present adaptation of existing results
to Hilbert spaces it is convenient to simplify notation. First
let {el,...,em} be linearly independent and let {eI,...,e;} be
the associated dual set; that is linear span{el,...,em} =
linear span{eI,...,g;} and <e;,ej> = Gij L, 9% . 0. 50, Lot

0™ (N, Biscesfiy) alkd ¥ = (Vv ,V8y4:4+3V,.) be two integer
= 1’2 m - 1*>72 m

tuplets. We shall use n + » to denote the condition that

all g * =, although not necessarily at the same rate.

Using equation (3) we define
m +
p(vix) = izlpni(vi.:<ei’X>)’ (6)
We note that p is a scalar valued polynomic map defined on H.

Using the notations

ne~2 |
]
o~
o~




and
m
f(v/n) = f(.Zl(vi/ni)ei) (7)
i=

we define the polynomic function fn on H by the expression

£ (x]) =

f(y/n)p(v:x), x eH.  (8)

e s
o

The result which can be gleaned from the classical
theory is the following

Theorem (1). If £ is bounded on Q then for each x € 2, and

e > 0 there is a finite tuplet n such that [[f(x) - £ (x)i] < ¢
at every continuity point of f. If f is continuous on @ then
||fn(x) - £(x)||] » 0 as n > » uniformly over Q.

Remark. In the above theorem  is given by equation (5). For

the more general situation
m
Q= { Z aje; t 0<a;<M;},
m
a simple change of variables f(v/n) = f[ ) (vi/ni)Miei]
i=1

preserves the validity of the theorem. If K is an arbritrary

compact set then one céh éhow that an affine map,Tt, exists such
that T(K)NQ#¢. Moreover T has an affine left inverse, ot

Letting g=fr+ we construct én to fit g on Q@ and then show that gn=
;nT fits f on K. These manipulations are straight forward but

cluttersome and are omitted to save space.
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Causality Structure. We now augment our real valued Hilbert

space with a resolution of the identity. The resultant
Hilbert resolution space has proved to be a natural setting

for the study of system theoretic problems (see [17], [20],

(213, [22]).

Let v denote an ordered set with minimal and maximal
elements to t_ respectively. The weakly closed set of orthoprojectors
bl

{Pt:tev} is a resolution of the identity provided pte - 0,
B

th = I and Pt > PB whenever t > B. Here Pt > P© denotes the

B t

condition PtP = PBPt = PB. We use also the notation Pt = I-P

pt-pf - PtPB = PBPt. Note that A(t,8) is

an orthoprojector and that A(t,B) =0 all B>t.

tev and A(t,B)

Consider now a function f on H with f(0)=0. Following

[171, [21], [22] we say that f is causal if and only if

tept L

pte = ptep : all t € v.- (9)

Now let {to,tl,.. t_} be an ordered finite subset of v.

jt

oty-10

For convenience set PJ = Ptj and A(j) = A(j,j-1) = Pj-lp Using
equation (9) it folloxs easily that A(j)f = A(j)ij holds

for causal f. Since ) A(j) =1 it follows that
b i

N- 5
£f= Y a(j)£pI
j=1

and taking the limit as the mesh {tO""’tN-l’tm} is ‘refined

one arrives at a natural integral representation,

f = IdP(s)fPs
Vv

™
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for f. This abbreviated discussion is expanded on in the
references cited. We use it here for motivational purposes.

Our attention now returns to the earlier Bernstein problem
with H being a Hilbert resolution space. The set {el,...,em} is

said to be well posed provided {Ptei: i=1,...,m} is linearly

independent for every t > to. For convenience we assume

that {el,...,em} is well posed. We note that if

Q@ = { Jase; : 0<a;<1}

= Q

£ e
G, iy Pre. @ 0<B,<1}

B
i=1?
then Qb = Pt(Q). It is also obvioys that when {el,...,em}
is well posed then {eI,...,e;} is well posed and the set
{(Pte1)+,...,(Ptem)+} is well defined for all t > ty.

Using equation (3) we make the extended definition
m t =
pilvixist) = I p. (M. <s(Pe:) x>}, all x € H, ([10)
= Ly G -

*
where ty # tev. It can be easily shown that p is continuous

in t, and, of course, polynomic in x, moreover

ptx = 0 =5 p(v:x;8) = O, gl g <% Oan

Recall now that f(v/n), of equation (7), for each v/n, is

an element of H. Choosing now a partition for v we form

This property assumes that (P} is continuous in the sense

that limHPtPt x|| = 0 all tev.
-€
e~+0
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N

I A f(u/n)p(u:ix;ts). (12)
J:l i J

We now take the 1limit over partition refinement

N
JaP(s) £(u/mIP(yix;s) = lim ] AGH)E(w/mIp(vix;t;)

N+ j=1
where the limit converges by a result of Masani [23],

Since the set v <.n is finite we may sum the above function

without disturbing the convergence. This results in the

definition

n
£500 = ] [aPe)f/mpt s, (13)
, v=0

We note first that fﬁ is causal, indeed

¥in L
PUEC) = | [ dP(s)EQu/mIpuix;s)
— y-=0 to
however
x t..
p(v:x;s) = p(u:P x;s) P -

and hence Ptfﬁ = Ptf;Pt, t > to Suppose now that f is

causal. Thus in equation (12)
A(DE(y/n) = Py P E(u/n)
= aG)cepd) (v/m)
m .
- A(j)f(_zl(vi/ni)pJei),
1=

therefore
n

A Y (P (u/mp(w:PIxs )
i

AGH) £ (X)
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The bracketed quantity, however, is the Bernstéin approximate
for A(j)fP? thus

N R

I AGYE: + T A

i=1 e
with convergence in the spirit of theorem (1).

We summarize our development in the following theorem

Theorem (2). If causal f is bounded on Q@ then for each xeQ,

and €>0 there exists n such that ||f(x) - fﬁ(x)ll < &
at every continuity point of f. If f is continuous on Q then

n exists such that sup||f(x) - fc(x)ll -
xeQ ‘ n

4. Realization. The explicit nature of equation (13) and

theorem (2) have answered the central theoretical

questions in rather complete form. It is of interest, however,
to give a realization of the causal Bernstein function, fﬁ, in
state variabie form. For this we shall focus attention o;

the real LZ[O,d], for 0<d<» equipped with the usual inner

product and tal.e the resolution of the identity to the familiar

truncation operators

. x(B) B <t
t
(P"x)(B) =
g B> %
In this last expression and elsewhere we slur over the distinction
between functions and equivalence classes of functions as is

the convention in dealing with the Lebesque spaces.

g ot




v
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Consider first the set {Ptei: i=1,...,m} which is well
posed. In earlier studies, [19], [20], the computation of
the parameterized dual set {(ptei)+} has been explored in
some detail. The pertinent results are summarized in the

following development. Following the earlier work define now

the m x m symmetric matricies N(t), X(t), N(t), A(t) by

the equalities (here t ¢ (0,x))

»

P o = e

N (0) - <btei,ej>[|Ptei|l-lllété;r{;l
X;5(t) = ei(t)||Ptei|l-261j

Mg;(0) = eg(0e; (0 [ 1P%e; 1171 [P e 117
Aij(t) = ||Ptei||-1sij

where X(t), A(t) are diagonal as indicated by the Kronecker
term Gij
Note that N(;) is the Grammian matrix of a linearly
independant set namely {Ptei/IIPteiII} and as such is-
invertable for all t > 0. It is shown in the references cited

that K(t) = N(t)'1 satisfies the Riccati equation

kK(t) = 1/72{X(t)K(t) + K()X(t)} - K(£)M(t)K(t). (14)

The equality K(t') = N(t')'1 provides an initialization on
this last equation for any t' > 0. In particular since

1limN(t) = Grammian{ei/lleill} it may prove convenient to solve
tot

equation (14) in reverse time.

v
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For convenience we let
t
column(Ptel,...,P em)

(¢ ]
n

o
]

- +
column((Ptel)',...,(Ptem) )

A result of [20] is that

e; = A(OK(DA()et, t >0 y 0. (1%

which is an explicit formula for g:. From equations (10), (13)
we see that <(Ptei)+,x> is a key ingredient. Using (15)
it can be easily seen that these functions are computed

in vector form by the expression

t
¥(x,t) JOA(t)K(t)A(t)g(s)x(s)ds s (16)

where

e(s)

¥Y(x,t) = column(<(Pte1)+,x>,...,<(Ptem)+,x>).

column(el(s),...,em(s))

We are now in position to state the relevant result
of [20].
Theorem (3). The equality z(t) = ¥(x,t) holds if and only if

P(t) = -1/2X(t)p(t) + A(t)e(t)x(t), te (0,°)
p(0) =0

z(t) = A(t)K(t)p(t) te (0,o),

It is noted that this theorem provides an explicit state

variable realization of the requisite map, x =+ VY.
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In stating our final result it is helpful to utilize

the change of variables z(t) =A(t)K(t)p(t) and the identity

A = (-1/2)XA which results in the corollary

Corollary. The equality z(t) = ¥(x,t) holds if and only

if

2(£) = -AORE (A (k) z(E) + A(E)K(E)A(E)e(t)x(t), €30
z(0) = O. 17y .

We turn now to the computation of the resolvent integral
of equation (13). Consider first a fixed y ¢ Lz(O,m) and a
bounded continuous scalar valued function m(-). Using the

notation A(j) of section (3) we have

m(ts)y(8) bl 2B ity
A(j)ym(j) =
0 otherwise
thus
m(t)y(t) t = tj
1imA(j)ym(j) =
[t.-t._ll + 0
J 0 otherwise.

Clearly then on Lz, 2. = IdP(s)ym(s) if and only if
z(t) = m(t)y(t) te (0,).

For convenience let b f(v/n). Recall also the scalar

valued functions, p(v:r) on [0,1)™
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J o (1]
p(v:r) = iElpni(vi:ri) (ryseeesTy) € (6,11
We construct the map ¢: {0,1]™ - L, by
n
jlie) = Ly (tplev), T ro,11"
v= —

The above development has culminated in the theorem.

Theorem (4). w = f;(x) if and only if

\ " -1
Z(t) = =A(E)K(©)T(£)AT (t)z(t) + A(£)R(t)A(t)e(t)x(t), £>0
. 0] = 0,
Tt w(t) = ¢ (z(1):t).

Example. In this example we let H = L2(0,1) and consider

the power functions
x;(t) = (1/3)t7 j= 1,..., te[0,1].

It is readily verified that the set {Ptxj: e 3.k Is

= linearly independent for any t € (0,1] and that

23 5 : .
[1Ptx;11% = ¢ J"l/azczm)_, d T (18)

In particular ||xj|| = 1/j/23'+1.

Now let T be given by the defining equality

' = = Xkt oclag
{x jzlaJxJ |aJ|§M}
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where 0<M<®». Using standard techniques it is not difficult to
verify the following facts about I'. First ' is compact and

second

1R Pl G

For any €>0 we choose &(e)> 8M2/e? in which case

2 = { x: lée&

. 31 3% | o

1.5 ™

contains an ¢/2 cover for T. Using continuity arguements
we construct approximations on Qe'

The set {Ptxj: j=1,..,2} is linearily independant for
all t>0 and hence the tools of theorem 4 apply. For convenience
let us assume 0<a; <l and make the choice ej=x.' 3=1,..,2.

We move then to theorem (3) and its corollary. Using
the defining equality it is easily seen that N is constant,

a property which was explored in detail in [19], and that all

guantities of equation (17) can be explicity determined. 1In

fact,
N“'= V(21+41) (23+41) / (i+3+1)
x1J = (2j+1)61j/t
Hij(t) = /(2i+1) (2j+1) /¢t

e(t) = col(t,..., tz/l)
It is important to note that the state vector of equation 17
is of dimension 2. This dimension is fixed from this point
forward and does not vary with n as the fﬁ approximations are

constructed. Of course as € is reduced 2 (e) increases.

3
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To carry forward in a very explicit manner let us

assume £=2. Then

16 —4./1_5”7i 3 0 [- 3 J/I%
K= 4 g x=t~1 ' n=t1
-4/15 16 | h 35 V15 5

~—t

Using equation 18 it is clear that A(t) and hence the matricies
of equation 17 are readily and explicitly determinable. Our
attention turns to the construction of the polynomic state ~+
output map of theorem 4.
Oour function set is of the form x(t)=at + Bt? with
0<a, Bii and we consider the function
[£(x)1(t) = x(t) + [®k(t)?

for y = f(x) it follows that

y(t) = 48% + at + Bt?2 (19)
Let us choose n = (2,2) in which case v can take on nine values
< n. Usihg the previous notation the following table is s

readily constructed

TABLE 1
v/n £(v/n) (t) Pp{vys zp ()0 Ppivys z,(¢)) p(y : z(t))
(0,0) 0 (1-2,(t) ]2 . -z, (8))? (1-2; (012 [1-2, ()1 2
(©,.5) 1e.5e% -z 1% 2z,(6) (-2, (8] 201-2 (6172, (6) (1-2, (6))
(©,1) ase? (1-2, (£))2 22 (¢) (1-z, (011722 (¢)
(.5,0) .5t 22 (¢) (1-2, (£)) (1-2,(6)1? 22) (£) [1-2, (£) ] (12, ()]
(5.8 1eseese? 2200 (0-2 (6] 25,00 (ezy(0)]  Azy(e)z,(8) (1-z) (6)]) L=z, (8)]
(.5,1) a+.5e4e2 22, (¢) (1-2, (¢)) 2 (t) 2z () [1-2 (£) )22 (t)
1,0 t 22 (t) -z, (8))? 22 (t) [1-2,(¢))
(1,.5) 1+t+.5¢2 z:(t) 22, (t) [1-2,(¢) ] 2z, (t)z,(t) [1-2,(t) ]
1,1 teeee? 22 (t) 22 (t) 2 (t)z (t)

The function ¢(z(t);t) is formed by taking the dot
product of the f(v/n) (t) and p(v: z(t)) columns of table 1.

The resultant expression does not add any additional clarity
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so we will forego this here. To illustrate, however, we note
that when a=0, 0<B<l then z,(t)=0 and z,(t)=B8. The above
dot product produces

(1 + .5¢2)(2) (B) (1-8) + (4 + t2)p2

¢(z(t),t)

28(1 +8) + gt2

The systen, f, produces
£(x) = 482 + Bt?

Similarly with 0<a<l and B=0 it can be verified easily that
(£x) (t) = ¢(z(t),t) = at.

5. Remarks and Conclusions. The example of the last section

demonstrates several properties which are not explicit in
theorem 4. We have already noted that the size of the state
space does not change with n. We see also that the output
constraint map ¢ is a memoryless function of the state. Finally
it is clear from table 1 that ¢ can be related to a bilinear
form. 1In short we let §=(1,zl,z;, zz,z;) in which case there
exist a matrix E(t) such that

$(z(t),£) = Z*(L)E()Z (L) t>0
The matrix E being taken from table 1 in the obvious way. This
form is also valid in the general case.

It was noted in the introduction that our results have
the characteristics of a sampling thceorem for systems. The
development does not emphasis this, however, in these results

c

one can see fn as a reconstruction of £ from the samples

{£(v/n) : v=0,1,...,n}.
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It should be noted that given a set of input-output
pairs {(xi,yi)} it is possible, by easier means (see [19]),
to construct a causal polynomic map p, such that p(xi)=yi
i=1,...,n. The polynomic construction of [19] however will not
necessarily uniformly approximate the continuous function
generating the original data. In the same spirit the Bernstein
system of section (4), while it approximates the function, does
not reproduce exactly the original input-~output measurements.

(It comes ¢ close, of course.)

In section (2) it was pointed out that the results of
[14, 15, 16, 17]) use a separability assumption on the domain.
The constructive methods of this study, however, do not seem-
to require this and it thus appears that the earlier results

!

have been strengthened as well as put in constructive form.

As regards the analytic operator approach [5,6,7,8] the
following comparative remarks are appropriate. The system T
is assumed to be differentiable with derivatives used in

modeling the u+*x map. This procedure has the following attributes:

(i) The expansion is valid on an input set ||u|| < k.

(ii) Computing of derivatives of high order is necessary
and f must be known to a comparable accuracy.

(iii) A family of nonlinear state equations with a linear
state » output map realizes the power series
expansion.

(iv) No input-output information is utilized in the expansion.

R
.

y
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In the same spirit the technique of sections 3,4 has the
following characteristics:
(i') The expansion is valid on a compact set.
(ii') f need only be known to be continuous.
(iii') A family of linear state equations with a
nonlinear state-output map realizes the poly-

nonic expansion.

(iv') Only input-output information is utilized in
the expansion.

The complexity of working with compact sets is
offset by the computation of derivatives, thus attributes (i)
and (ii) are computationallyon a par with (i') and (ii').
Concerning (iii) and (iii') the merits of shifting the
nonlinear behavior to the output constraint can be judged
only in light of a specific application. Attributes (iv)
and (iv') serve to crystalize the comparison. If the system
is precisely known then the power series expansion methodology
seems to have the advantage, although one might question
expanding at all in this case. 1If the system is unknown then
the methodology of this study can be utilized to mathematically
model the system using external measurements.

Consider now the question of convefgence rate. In thé
power series methodology convergence properties parallel those
of the power series on the real line. Similarly the Bernstein
system of theorem (4) is a linear operator composed with a
memoryless Bernstein map and as such convergence properties
of the Bernstein polynomials on R are inherited by the Bernstein
system. Thus an accurate assessment for comparative
convergence is obtained by looking at the situation on the

real line.
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We consider then the set [0,1] ¢ R, which satisfies
both (i) and (i') as the domain of interest. For the function

f on R let m(.) denote the modulus of continuity of f defined

by

m(a) = sup{|£(x)-£(y)| : 0<x,y<1l, [x-y|<al}.

For-continuous f obvioﬁsly m(a) - 0 as a » 0. We cite some
standard results which go back to Jackson [25], Vallee-Poussin
[26] and Popoviciu [27].

Here we use bn to denote the Bernstein polynomial of
order n.
(a) For each n

sup |f(x)-b_(x) | (5/4)m(n"1/2)

(0,1]

| A

If f is differentiable and my is the modulus of continuity
of f' then we have also
(b) For each n

sup|f(x)-b_(x)| < (3/4)n"1/ 2n (a71/2
(0,1)

In closing I would like to acknowledge the careful
review and constructive suggestions of ( )

which have materially improved the paper.
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